A wide-angle gradient index optical model of the crystalline lens and eye of the octopus

نویسندگان

  • W. S Jagger
  • P. J Sands
چکیده

Cephalopods and fish have had no common ancestor since the Cambrian, and their eyes are a classic example of convergent evolution. The octopus has no cornea, and immerson renders the trout cornea optically ineffective. As a result, the nearly spherical lens is responsible for all refraction in these eyes. In spite of the fact that the octopus lens consists of two joined parts, while the trout lens consists of one part, we show here that their optical properties are very similar. An index gradient bends rays within these lenses, adding power and correcting spherical aberration. High spherical symmetry in both lenses strongly reduces other monochromatic aberrations and yields a wide field of vision, advantageous in attack and evasion. The octopus Mattheissen's ratio, 2.83, an inverse measure of light-gathering power, lies above the trout value of 2.38 but within the range of values reported for fish. Strong uncorrected longitudinal chromatic aberration is nearly identical in both animals as a result of similar lens protein optical properties, and will limit resolution. We discuss how animal lifestyle requirements and lens material properties influence the design of these eyes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wide-angle Gradient Index Optical Model of the Crystalline Lens and Eye of the Rainbow Trout

Trout lens external shape and internal refractive index gradient structure were measured and used to construct an optical lens model that predicts by ray tracing the average longitudinal spherical and chromatic aberration, focal length and image quality. The nearly spherical shape of the lens was measured from photographs, and the internal refractive gradient structure was measured directly wit...

متن کامل

Geometry-invariant gradient refractive index lens: analytical ray tracing.

A new class of gradient refractive index (GRIN) lens is introduced and analyzed. The interior iso-indicial contours mimic the external shape of the lens, which leads to an invariant geometry of the GRIN structure. The lens model employs a conventional surface representation using a coincoid of revolution with a higher-order aspheric term. This model has a unique feature, namely, it allows analy...

متن کامل

Wide-field schematic eye models with gradient-index lens.

We propose a wide-field schematic eye model, which provides a more realistic description of the optical system of the eye in relation to its anatomical structure. The wide-field model incorporates a gradient-index (GRIN) lens, which enables it to fulfill properties of two well-known schematic eye models, namely, Navarro's model for off-axis aberrations and Thibos's chromatic on-axis model (the ...

متن کامل

Study of Optical Models Regarding the Human Eye

Introduction: Until now, many models have been presented for optical study of the human eye. In recent years, surgery on the anterior section of the eye (such as cataract and photo-refractive surgery) has increased, so a study on the optics of the eye and evaluation of vision quality has become more important. Material and Methods: In this article, some of these models are considered. They incl...

متن کامل

Development of a human eye model incorporated with intraocular scattering for visual performance assessment.

A biometry-based human eye model was developed by using the empirical anatomic and optical data of ocular parameters. The gradient refractive index of the crystalline lens was modeled by concentric conicoid isoindical surfaces and was adaptive to accommodation and age. The chromatic dispersion of ocular media was described by Cauchy equations. The intraocular scattering model was composed of vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 39  شماره 

صفحات  -

تاریخ انتشار 1999